
International Journal of Heat and Mass Transfer 48 (2005) 395–402

www.elsevier.com/locate/ijhmt
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Abstract

An analytical solution of the problem of diffusional mass transport inside a spherical binary mixture droplet is pre-

sented. The droplet evaporates according to the d2-law. Mass fraction profiles of the mixture components are obtained

as series expansions in confluent hypergeometric, Legendre and sine/cosine functions. The analytical description is valid

for arbitrary ratio of the rate of shrinkage of the sphere surface to the diffusion coefficient in the liquid phase. The

results allow for a prediction of the morphology of the dried particles, i.e., whether hollow or solid spheres result from

the drying process. The field of application of the results presented is spray drying of solutions of solid substances.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Technical processes like spray drying and air/fuel

mixture formation rely on the evaporation of liquid

components from droplets in a hot gaseous environ-

ment. In the former process, the dry solute is the goal

of the process, while in the latter the gaseous mixture

of air and fuel vapor is desired. In both cases, the droplet

liquid undergoes a temporal change in composition due

to the liquid evaporation, which may lead to the forma-

tion of concentration gradients inside the droplet. It has

been recognized quite some time ago that in spray dry-

ing the mass transfer processes inside the droplet are

the key to understanding the formation of dry particles

with different morphology. Duffie and Marshall [1]

looked at the influences of the drying and liquid feed

temperatures, initial solute concentration and material
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properties on the resulting dry particles. They investi-

gated aqueous solutions of salts like NaCl, KNO3,

NH4NO3 and others, solutions of dyes, milk, and corn

syrup. An important result of their investigations was

that increased drying temperatures lead to a decrease

of the bulk density of the dry particulate matter due to

increased particle sizes. Variations in the liquid feed tem-

perature, in contrast, have only marginal influence on

the drying result. In [2,3] we find the factors listed that

may lead to the formation of hollow spheres in spray

drying: the formation of a surface film of dry solute

on the droplet (as it is the case with, e.g., aqueous Na-

SiO3 and C12H22O11 solutions), which keeps the particle

size widely constant during the drying process and may

finally rupture as the second drying stage starts; large

drying rates as compared to the diffusive mass transport

of solute in the droplet, so that hollow shells are formed;

and finally the capillary effects of the solid surface, once

it is formed, which can force the liquid solution towards

the surface and lead to an under-pressure inside the par-

ticle. Sano and Keey [4] developed a drying model for
ed.
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Nomenclature

a droplet radius (m)

a, b parameter of Kummer�s function (–)

a0 initial droplet radius (m)

A droplet surface (m2)

BM Spalding mass transfer number (–)

Cj expansion coefficient (–)

D diffusion coefficient (m2/s)

G non-dimensional diffusion coefficient (–)

_mi evaporation rate of component i (kg/s)

_mf ;i evaporation mass flux of component i (kg/

(m2s))

M confluent hypergeometric function of the

first kind (–)

m, n integer separation numbers (–)

p exponent (–)

r radial coordinate (m)

Sh* modified Sherwood number (–)

t time (s)

U confluent hypergeometric function of the

second kind (–)

Yi mass fraction of mixture component i (–)

Y 20 volume-average mass fraction of solute (–)

Ysat,2 mass fraction of solute at saturation (–)

Greek symbols

a non-dimensional rate of shrinkage of the

droplet surface (–)
~a rate of shrinkage of the droplet surface (m2/

s)

e porosity (–)

# polar angle in spherical coordinates (rad)

kj eigenvalue (–)

n non-dimensional radial coordinate (–)

ql liquid density (kg/m3)

u azimuthal angle in spherical coordinates

(rad)
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predicting the formation of hollow particles in the dry-

ing of skim milk. These authors identified the increase

of the vapor pressure at the beginning of the second dry-

ing stage as the reason for the inflation of the dried par-

ticles. Ford [5] presented a model for the drying of

aqueous NaCl solution droplets, which includes the dif-

fusional transport of the solute in the liquid, the forma-

tion of crystallization nuclei, the growth of the crystals,

and the formation and growth of a solid crust on the

surface of the drying droplet. In the modeling of the

solid crust, a constant porosity of e = 0.7 is assumed,

which is typical for a dense packaging of monodispersed

spheres. The result of Ford�s calculations is a morphol-

ogy chart for the dry particles, which specifies the inter-

nal structure of the particles (i.e., hollow or solid

spheres) as a function of initial droplet radius, drying

temperature, drying air humidity, and initial salt concen-

tration. Elapsed times to the formation of the solid crust

are also given. The typical time to crust formation for

NaCl solution droplets is 90 ms for an initial droplet

diameter of 20lm, initial salt concentration of 200kg/

m3, a drying temperature of 80 �C, and zero ambient

air humidity. Yarin, Brenn and coworkers [6,7] investi-

gated this behavior of aqueous NaCl solution droplets

using an acoustic levitator. These authors identified a

characteristic parameter in the non-dimensional diffu-

sion equation for mass transport of the solute in the liq-

uid, which may be used for characterizing the drying

regimes with solid and hollow sphere formation.

It is the aim of the present work to provide an analyt-

ical solution for the concentration fields in the droplet as

a function of time and space during evaporation in order

to predict the tendencies of the droplets to form hollow
or solid dry particles. The solution is valid for cases with

linear decrease of the droplet surface area with time. The

mathematical function developed is valid for arbitrary

ratio of surface shrinkage rate to diffusion coefficient

of the solute in the liquid and predicts the formation

of high solute concentrations at the surface of the sphere

for high drying rates accurately.
2. Mathematical description

We treat the problem of evaporation of a spherical

droplet consisting of a binary mixture of a liquid (called

the solvent) and a dissolved solid substance with very

low vapor pressure (called the solute). The evaporation

rate is, among others, determined by the Sherwood

number imposed by the convective situation of the drop-

let in its host medium. The mass transfer inside the drop-

let, however, is considered to be controlled by diffusion

and by the shrinkage of the droplet surface, i.e., we do

not consider recirculating motions inside the droplet.

The problem is therefore governed by the continuity

and energy equations. Liquids like the ones relevant

for spray drying exhibit Lewis numbers of O(102), which

means that the temperature relaxation goes much faster

than mass diffusion. We therefore assume flat tempera-

ture profiles in the droplet and concentrate exclusively

on the calculation of the concentration profiles in the

liquid [8]. The droplet temperature as a function of time

must of course be determined for an evaluation of the

equations we develop here. In our calculations we deter-

mine it as the wet-bulb temperature of water at the

ambient temperature and relative humidity chosen.
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2.1. Definition of the problem

For the droplet liquid at rest, the continuity equation

for each component of the binary liquid mixture reduces

to the diffusion equation. We therefore start from the

diffusion equation for the mass fraction Yi of a mixture

component i in the droplet. Since the droplet shape is as-

sumed to be spherical all the time, it makes sense to for-

mulate the Laplace operator on the right-hand side of

the diffusion equation in the spherical coordinates r, #,
and u. The diffusion equation for the substance i in

the binary mixture droplet, formulated in the mass frac-

tion Yi, reads

oY i

ot
¼ D

1

r2
o

or
r2
oY i

or

� �
þ 1

r2 sin#
o

o#
sin#

oY i

o#

� ��

þ 1

r2sin2#

o2Y i

ou2

�
; ð1Þ

where D is the binary diffusion coefficient in the liquid.

In this equation, subscript i = 1 will be used for the sol-

vent, and i = 2 for the solute. The boundary condition is

that the mass fraction Yi(r = a(t)) at the droplet surface

be determined by equation

�D
oY i

or
� da

dt
Y i ¼

_mf ;i

ql

at r ¼ aðtÞ for all times t; ð2Þ

where a is the time-dependent droplet radius, ql is the

liquid density and _mf ;i the mass flux of substance i across

the droplet surface. The latter may be a function of

the angles # and u, but it may be formulated as the

ratio _mi=A of the evaporation rate of component i

and the droplet surface A in the case that there is no

dependency on these angles. It is furthermore zero for

the dissolved solid substance, which is assumed to be

non-evaporating here. For the solvent, the evaporation

rate is determined by the convective situation of the

droplet in the ambient gaseous medium. Further to this

boundary condition, the solution of Eq. (1) must satisfy

the regularity condition that the radial derivative of the

mass fraction profile vanishes at the droplet center, i.e.,

that

oY i

or
¼ 0 at r ¼ 0 for all times t ð3Þ

and the initial condition that the mass fraction profile of

substance i in the droplet at time t = 0 (which must also

satisfy the boundary and regularity conditions, of

course) be given as a function

Y iðt ¼ 0; rÞ ¼ Y i0ðrÞ for all r at time t ¼ 0: ð4Þ

The spatial domain on which the problem is to

be solved, i.e., the volume of the spherical droplet, is

time-dependent. We therefore choose a similarity ap-

proach for solving the differential equation and trans-

form it according to t1 = t, n = r/a(t) into the form
a2
oY i

ot
¼ da2

dt
n
2

oY i

on
þ D

n2
o

on
n2

oY i

on

� �

þ D

n2
1

sin#

o

o#
sin#

oY i

o#

� �
þ 1

sin2#

o
2Y i

ou2

� �
; ð5Þ

where we have dropped the subscript 1 from the time t1
[6]. The boundary, regularity, and initial conditions

transform accordingly. The boundary condition (2)

now reads

�D
oY i

on
� ~a
2
Y i ¼

aðtÞ _mf ;i

ql

at n ¼ 1 for all times t; ð6Þ

where we have denoted the rate of shrinkage da2/dt by ~a.
The regularity condition (3) now reads oYi/on = 0 at

n = 0, and the initial condition (4) becomes

Y iðt ¼ 0; nÞ ¼ Y i0ðnÞ for all n at time t ¼ 0: ð7Þ

We now render the whole problem non-dimensional

with the droplet lifetime tl defined as

tl ¼
a20
~a

Y 20

ð1� Y 20Þqs2=q1 þ Y 20

� �2=3

� 1

" #
; ð8Þ

and the initial droplet radius a0. Here we denote the

mean initial mass fraction of solute in the droplet by

Y 20, the solid density by qs2, and the solvent density by

q1. The droplet lifetime as defined by equation (8) is ob-

tained under the assumption that, at the end of the dry-

ing process, the remaining particle has the density qs2 of
the compact solid substance, which is the longest possible

lifetime. Using these reference quantities, we obtain the

non-dimensional form of the differential equation (5) as

�a2
oY i

os
¼ a

n
2

oY i

on
þ G

n2
o

on
n2

oY i

on

� �

þ G

n2
1

sin#

o

o#
sin#

oY i

o#

� �
þ 1

sin2#

o
2Y i

ou2

� �
; ð9Þ

where

�a ¼ a
a0

; s ¼ t
tl
; a ¼ ~a

tl
a20

; G ¼ D
tl
a20

:

The boundary condition (6) is rewritten and yields

� oY i

on
� a
2G

Y i ¼
aðsÞ _mf ;i

Dql

at n ¼ 1 for all times s;

ð10Þ

and the initial condition becomes

Y iðs ¼ 0; nÞ ¼ Y i0ðnÞ for all n at time s ¼ 0: ð11Þ
2.2. Analytical solution of the problem

We see that the differential equation (9) is separable

in the case that the (non-dimensional) shrinkage rate
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of the droplet surface a is time-independent, i.e., if the

droplet evaporates according to the so-called d2-law.

The droplet surface as a function of time then reads

A ¼ A0 þ 4p~at, which is in non-dimensional form �a2 =
1 + as. With the separation approach Yi(s,n,#,u) =
T(s) Æ F(n) Æ H(#) Æ X(u) we obtain the ordinary differen-

tial equations

�a2

G
T 0

T
¼ n

2

a
G
þ 2

n

� �
F 0

F
þ F 00

F

þ 1

n2
1

sin#

1

H
d

d#
ðsin# � H 0Þ þ 1

sin2#

X 00

X

� �

:¼ �kj
a
G
; ð12Þ

where primes denote derivatives w.r.t. the independent

variables, and kj is the separation constant. The differen-

tial equation for the function T(s) is readily solved to

yield

T ðsÞ ¼ Csð1þ asÞ�kj ; ð13Þ

where Cs is a constant. The remaining differential equa-

tion for the functions of the non-dimensional radial

coordinate n and the angles # and u is further separated

to yield

n2
n
2

a
G
þ 2

n

� �
F 0

F
þ F 00

F
þ kj

a
G

� �

¼ � 1

sin#

1

H
d

d#
sin# � H 0ð Þ � 1

sin2#

X 00

X
:¼ nðnþ 1Þ; ð14Þ

where n is an integer number. From this equation we ob-

tain the differential equation

n2F 00 þ a
2G

n2 þ 2
� �

nF 0 þ kj
a
G
n2 � nðnþ 1Þ

h i
F ¼ 0

ð15Þ

in the non-dimensional radial coordinate n. Further sep-
aration of Eq. (14) yields the two differential equations

� sin#
1

H
d

d#
ðsin# � H 0Þ � nðnþ 1Þsin2# ¼ X 00

X
:¼ �m2

ð16Þ

with the integer number m. From these equations we

obtain

1

sin#

d

d#
sin# � H 0ð Þ þ nðnþ 1Þ � m2

sin2#

� �
H ¼ 0 ð17Þ

and

X 00 þ m2X ¼ 0 ð18Þ

as the differential equations governing the shape of the

mass fraction profiles in the directions of the angles #
and u. In the separation, the number m must be zero

or an integer number, and the number n must satisfy
the relation n P m. Equation (17) is Legendre�s differen-
tial equation with the general solution

Hðcos#Þ ¼ C1Pm
n ðcos#Þ þ C2Q

m
n ðcos#Þ; ð19Þ

where the Pm
n and Qm

n are the Legendre functions of the

first and second kind, respectively, and C1, C2 are con-

stants. Since we expect a finite solution at the poles of

the sphere, we must exclude the functions of the second

kind from the solution by setting C2 = 0. Eq. (18) is a

harmonic differential equation with the general solution

X ðuÞ ¼ D1 cosmuþ D2 sinmu; ð20Þ

where D1, D2 are constants.

Solving the differential equation (15) in the non-

dimensional radial coordinate requires some more effort.

Equation is of the type 2.215 in the book by Kamke [9],

and it belongs to the group of hypergeometric ordinary

differential equations. The equation may be transformed

by

F ðnÞ ¼ lk � fðlÞ; ð21Þ

with l = n2, to yield the new form

lf00 þ a
4G

lþ 3

2
þ 2k

� �
f0 þ ðk þ kjÞ

a
4G

f ¼ 0: ð22Þ

In the transformation (21), the exponent k is to be

determined as a solution of the equation

4k2 þ 2k � nðnþ 1Þ ¼ 0; ð23Þ

which yields the results k1 = n/2 and k2 = �(n + 1)/2. A

further transformation of (22) by f(l) = Z(x) with

x = cl (where c is a constant) leads to the final form

of the differential equation, which reads

xZ 00 þ �xþ 3

2
þ 2k

� �
Z 0 � ðk þ kjÞZ ¼ 0; ð24Þ

where we had to take c = �a/(4G). Eq. (24) is readily

identified as the confluent hypergeometric equation

[10]. After transformation back into the function F(n),
we have the general solution of (15) reading

F ðnÞ ¼ n2k E1 �Mðkj þ k;
3

2
þ 2k; cn2Þ

�

þE2 � Uðkj þ k;
3

2
þ 2k; cn2Þ

�
; ð25Þ

where E1, E2 are constants. The functions M and U are

confluent hypergeometric functions of the first and sec-

ond kind, respectively. The function of the first kind is

also called Kummer�s function. The two functions are

defined as follows [10]:

Mða; b; xÞ ¼ 1þ a
b
xþ aðaþ 1Þ

bðbþ 1Þ
x2

2!

þ aðaþ 1Þðaþ 2Þ
bðbþ 1Þðbþ 2Þ

x3

3!
þ � � � : ð26Þ
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Uða; b; xÞ ¼ p
sinpb

Mða; b; xÞ
Cð1þ a� bÞ � CðbÞ

�

�x1�b M 1þ a� b; 2� b; xð Þ
CðaÞ � Cð2� bÞ

�
: ð27Þ

With these functions, the general solution (25) reads

F ðnÞ ¼ E1 � n2kM kj þ k;
3

2
þ 2k;� a

4G
n2

� �

þ E2 �
p

sin p 3
2
þ 2k

� �	 

� n2k

M kj þ k; 3
2
þ 2k;� a

4G n
2

� �
C 1þ kj � 3

2
� k

� �
� C 3

2
þ 2k

� �
"

� � a
4G

� ��1
2
�2k 1

n

M kj � 1
2
� k; 1

2
� 2k;� a

4G n
2

� �
C kj þ k
� �

� C 1
2
� 2k

� �
#
:

ð28Þ

An inspection of Eq. (28) reveals that the function U

with the coefficient E2 diverges as n ! 0, i.e., at the

droplet center. This part of the solution must therefore

be excluded by setting E2 = 0. Furthermore we see that,

in order that the term with E1 does not diverge at the

droplet center, we must select positive values of k or

zero, i.e., the solution k = n/2 of Eq. (23). We therefore

obtain as the general solution of the differential equation

(15) the function

F ðnÞ ¼ Cnn
nM kj þ

n
2
;
3

2
þ n;� a

4G
n2

� �
: ð29Þ

We can now compose an eigensolution of the diffu-

sion equation (9), according to our separation approach,

from the functions given by Eqs. (13), (19), (20), and (29)

in the form

Y i;jðs; nÞ ¼ ð1þ asÞ�kj � ½C1nm;j cosmuþ C2nm;j sinmu�

� nnPm
n ðcos#Þ �M kj þ

n
2
;
3

2
þ n;� a

4G
n2

� �
ð30Þ

and obtain the general solution of the equation as the

linear combination

Y iðs; nÞ ¼
X
j

X
n;m

ð1þ asÞ�kj

� ½C1nm;j cosmuþ C2nm;j sinmu�

� nnPm
n ðcos#Þ �M kj þ

n
2
;
3

2
þ n;� a

4G
n2

� �
ð31Þ

of all these eigensolutions. An inspection of Eq. (31) re-

veals that the functions satisfy the regularity condition

at the droplet center.

For treating a most realistic case, we assume the

profiles of the mixture component mass fractions to be

radially symmetric by setting n = m = 0. This simplifica-

tion turns Eq. (31) into the form
Y iðs; nÞ ¼
X
j

Cjð1þ asÞ�kj �M kj;
3

2
;� a

4G
n2

� �
; ð32Þ

which describes the mass fraction profiles in the sphere.

The coefficients Cj in this series expansion are deter-

mined by satisfying the initial condition (11). The

boundary condition (10) must be satisfied by all eigen-

solutions separately, i.e., by all Kummer�s functions in

(32). This boundary condition is particularly simple for

the non-evaporating solute i = 2, since it is homogene-

ous in this case. Formulating this condition by substitut-

ing the summand of (32) into the boundary condition

(10), we obtain for _m2 ¼ 0 the requirement that

M 0 kj;
3

2
; x

� �
�M kj;

3

2
; x

� �
¼ 0 at n ¼ 1: ð33Þ

In this equation, the prime denotes the derivative of

the function M w.r.t. the third argument x = �an2/
(4G). Making use of the identity [10]

ðj� iÞMði; jþ 1; xÞ ¼ j½Mði; j; xÞ �M 0ði; j; xÞ�; ð34Þ

we see that Eq. (33) can be satisfied by letting

k0 ¼
3

2
or for M kj;

5

2
;� a

4G

� �
¼ 0 ð35Þ

i.e., we obtain solutions of our problem by choosing the

eigenvalues kj as 3/2 (for j = 0) or such that the value of

the quantity �a/(4G) becomes the jth zero (j > 0) of the

function M in (35). These zeros are computed following

a procedure given by Abramowitz and Stegun [10].

The expansion coefficients Cj in (32) must be deter-

mined such that the expansion (32) represents the initial

distribution of the mass fraction Yi0(n) in the droplet at

s = 0. For doing this, we need an orthogonality relation

for the eigenfunctions of the problem. Inspection of the

ordinary differential equation (15) for our special case

n = 0 reveals that the quantity �akj/G is an eigenvalue

of the differential operator

o2

on2
þ a

2G
nþ 2

n

� �
o

on
: ð36Þ

This operator is not symmetric with respect to the

formation of scalar products in Hilbert spaces, so that

we cannot expect the eigenfunctions satisfying the differ-

ential equation (15) to be orthogonal, nor can we expect

that the system of functions in (32) be complete nor that

the eigenvalues be real. However, trying to convert the

operator into a symmetrical form by multiplying the dif-

ferential equation (15) for n = 0 with a function q, i.e.,

requiring that

qF 00 þ q
a
2G

nþ 2

n

� �
F 0 ¼ o

on
q
oF
on

� �
¼ �kj

a
G
qF ; ð37Þ

we find that we can make the differential operator sym-

metrical. This requires appropriate determination of the
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function q, for which we obtain a differential equation

by differentiating the central part of (37) and comparing

the terms obtained with the left-hand part [11]. This

comparison leads to a differential equation for the func-

tion q, which has the solution

qðnÞ ¼ n2ean
2=ð4GÞ: ð38Þ

Since this procedure worked just with a multiplica-

tion of the original ordinary differential equation (15)

(for n = 0) with a function q, the solution (29) with

n = 0 remains valid, and, in order to obtain the coeffi-

cients Cj in the expansion (32), we can now make use

of the orthogonality of two functionsM when multiplied

by the function q given by (38). This means that we can

now calculate the coefficients Cj such that the expansion

(32) represents the initial distribution Y20(n) of the mass

fraction of the solute in the droplet liquid. The equation

for the Cj reads

Cj ¼
R 1

n¼0
qY 20ðnÞMðkj; 3=2;�an2=ð4GÞÞdnR 1

n¼0
qMðkj; 3=2;�an2=ð4GÞÞ �Mðkj; 3=2;�an2=ð4GÞÞdn

:

ð39Þ

With this equation, the problem of diffusional mass

transport of the solute inside the droplet is solved for

the special case of radial symmetry of the concentration

fields. With the field of the mass fraction Y2(s,n) of the
solute known, we can easily calculate the field Y1(s,n)
of the solvent as Y1(s,n) = 1�Y2(s,n).
3. Evaluation of the equations and example calculations

We evaluate the equations found in the preceding

section assuming that the initial distribution of the sol-

ute mass fraction may be described as a polynomial of

the form

Y 20ðnÞ ¼ a0 þ apn
p: ð40Þ

This is the simplest initial mass fraction distribution

which may satisfy both the boundary condition at

n = 1 and the regularity condition at the droplet center.

The coefficients in (40) are determined by the boundary

condition and by the requirement that the integral of the

distribution Y20(n) over the droplet volume must yield

Y 20 times the initial droplet volume, which is a known

quantity for the liquid solution at the beginning of the

drying process. The coefficients read

a0 ¼ Y 20

p þ a
2G

p þ p
pþ3

a
2G

and ap ¼ �Y 20

a
2G

p þ p
pþ3

a
2G

: ð41Þ

In these equations, Y 20 is the overall mean mass frac-

tion of solute in the droplet at s = 0. For the exponent p

we will take the value of 5 in our calculations below.

Having chosen a set of input data a0, Y 20, D and ~a, we
first compute the eigenvalues kj from (35) and the expan-
sion coefficients Cj from (39), and then compute the val-

ues of the function (32) at various times 0 6 s 6 1 and

non-dimensional radial positions 0 6 n 6 1, varying

the ratio ~a=D of the rate of droplet shrinkage to the dif-

fusion coefficient of the solute in the solvent (or of the

corresponding non-dimensional quantities a and G).

For the rate of droplet shrinkage we take typical values

obtained in our levitator experiments [6] in order to en-

sure realistic cases. The diffusion coefficient we take as

concentration-independent, which is a valid assumption

for a wide range of concentrations. The rate of shrinkage

may be associated with the Sherwood number of mass

transfer across the droplet surface and with other rele-

vant parameters according to the equation

a ¼
qg

q1

Dg

D
GSh� lnð1þ BMÞ; ð42Þ

where qg is a mean gas density around the droplet, q1 is
the liquid solvent density, Dg the diffusion coefficient of

the evaporated solvent in the ambient air, Sh* a modi-

fied Sherwood number as introduced in [12], and BM

the Spalding mass transfer number. This equation quan-

tifies the change of the Sherwood number with time to

be realized according to the temporal change of BM

due to the increasing concentration of solute near the

surface of the droplet during the drying process. A sim-

ilar equation was developed in [7]. In that paper, how-

ever, the convective mass transfer of liquid vapor from

the droplet surface was caused by an acoustic streaming

flow. The Sherwood number had therefore to be mode-

led accordingly.

As an example we calculate the drying of droplets of

an aqueous sodium chloride solution at two different

rates of droplet shrinkage a. We take a as constant, as

assumed in our theory, choosing different ratios of a/G
far below and far above 1. The following two figures

show the computational results achieved by evaluating

Eq. (32) together with (35) and (39), using the above

procedure. It turned out that a maximum number of

10 terms in the expansion (32) is sufficient to have an

accurate description of the mass fraction profiles. The

curves in the two figures are profiles for different non-

dimensional times, starting with the initial states s = 0.

The uppermost curves in the figures show the situation

where the saturation concentration Ysat,2 is reached at

the surface of the droplet for the first time. The data

shown in Fig. 1 belong to the case of a low evaporation

rate and show flat concentration profiles, as expected,

since the diffusive transport of solute in the droplet liq-

uid has enough time in this case to redistribute the solute

from the surface of the droplet towards its center during

solvent evaporation. The profiles in Fig. 2, in contrast,

are found for a relatively high evaporation rate of the

solvent. Consequently, larger gradients of the mass

fraction of the solute are seen. The profiles show a clear

tendency of the drying droplets to turn into hollow



Fig. 1. Evolution of the mass fraction Y2 of solute in a drying droplet of a sodium chloride solution as a function (a)—of the non-

dimensional radial coordinate n, (b)—of the dimensional radial coordinate, showing the shrinkage of the droplet with time. Data:

q1 = 1000kg/m3, qs2 = 2165kg/m3, ~a ¼ �0:46� 10�9 m2=s, D = 1.61 · 10�9 m2/s, Y 20 ¼ 0:06, Ysat,2 = 0.2629, a0 = 0.734mm. Diffusion

coefficient and saturation mass fraction correspond to a droplet wet bulb temperature of 8 �C, i.e., to an ambient air temperature of

20�C and a relative humidity of 4.7%. The value of the exponent p in the initial distribution is 5.

Fig. 2. Evolution of the mass fraction Y2 of solute in a drying droplet of a sodium chloride solution as a function (a) – of the non-

dimensional radial coordinate n, (b) – of the dimensional radial coordinate, showing the shrinkage of the droplet with time. Data:

q1 = 1000kg/m3, qs2 = 2165kg/m3, ~a ¼ �5:64� 10�9 m2=s, D = 1.61 · 10�9 m2/s, Y 20 ¼ 0:06, Ysat,2 = 0.2629, a0 = 0.734mm. Diffusion

coefficient and saturation mass fraction correspond to a droplet wet bulb temperature of 8 �C, i.e., to an ambient air temperature of

20�C and a relative humidity of 4.7%. The value of the exponent p in the initial distribution is 5.
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spherical shells for the high evaporation rate, while the

low evaporation rate clearly leaves enough time for pro-

ducing solid spheres. Another effect is that the time

elapsed until saturation is reached at the droplet surface

is longer for the lower evaporation rate. The analytical

solution of the diffusion equation is seen to yield physi-

cally plausible results.
4. Conclusions

An analytical solution of the diffusion equation on a

spherical domain with moving boundary is developed in

order to quantify the diffusive transport of the compo-
nents of a binary mixture inside a droplet during evapo-

ration of the solvent. The diffusion equation governing

the problem is solved using a separation approach for

the special case of time-independent rate of shrinkage

of the droplet, i.e., for a droplet drying according to

the d2-law. The dependency of the solute concentration

on the radial coordinate is found to be given by Kum-

mer�s functions, which belong to the group of confluent

hypergeometric functions, while the dependencies on the

angles # and u in spherical coordinates are given by Leg-

endre and sine or cosine functions, respectively. The

solution presented for the special case that the mass frac-

tions of the mixture components depend on the radial

coordinate only is valid for arbitrary values of the ratio
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of rate of droplet shrinkage to diffusion coefficient in the

droplet liquid. An investigation of the analytical func-

tion for typical drying situations reveals the expected

behavior, i.e., the formation of large concentration gra-

dients in the droplet at high evaporation rates, and flat

concentration profiles for slow drying. Times elapsed

until the state of saturation is reached are quantified.

Other phenomena in drying like precipitation and crust

formation are not included in the calculations.
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